Zero-Shot Learning with Generative Latent Prototype Model
نویسندگان
چکیده
Zero-shot learning, which studies the problem of object classification for categories for which we have no training examples, is gaining increasing attention from community. Most existing ZSL methods exploit deterministic transfer learning via an in-between semantic embedding space. In this paper, we try to attack this problem from a generative probabilistic modelling perspective. We assume for any category, the observed representation, e.g. images or texts, is developed from a unique prototype in a latent space, in which the semantic relationship among prototypes is encoded via linear reconstruction. Taking advantage of this assumption, virtual instances of unseen classes can be generated from the corresponding prototype, giving rise to a novel ZSL model which can alleviate the domain shift problem existing in the way of direct transfer learning. Extensive experiments on three benchmark datasets show our proposed model can achieve state-of-the-art results.
منابع مشابه
Zero-Shot Learning via Class-Conditioned Deep Generative Models
We present a deep generative model for Zero-Shot Learning (ZSL). Unlike most existing methods for this problem, that represent each class as a point (via a semantic embedding), we represent each seen/unseen class using a classspecific latent-space distribution, conditioned on class attributes. We use these latent-space distributions as a prior for a supervised variational autoencoder (VAE), whi...
متن کاملGenerative-Discriminative Variational Model for Visual Recognition
The paradigm shift from shallow classifiers with hand-crafted features to endto-end trainable deep learning models has shown significant improvements on supervised learning tasks. Despite the promising power of deep neural networks (DNN), how to alleviate overfitting during training has been a research topic of interest. In this paper, we present a Generative-Discriminative Variational Model (G...
متن کاملImagine it for me: Generative Adversarial Approach for Zero-Shot Learning from Noisy Texts
Most existing zero-shot learning methods consider the problem as a visual semantic embedding one. Given the demonstrated capability of Generative Adversarial Networks(GANs) to generate images, we instead leverage GANs to imagine unseen categories from text descriptions and hence recognize novel classes with no examples being seen. Specifically, we propose a simple yet effective generative model...
متن کاملLatent Constraints: Learning to Generate Conditionally from Unconditional Generative Models
Deep generative neural networks have proven effective at both conditional and unconditional modeling of complex data distributions. Conditional generation enables interactive control, but creating new controls often requires expensive retraining. In this paper, we develop a method to condition generation without retraining the model. By post-hoc learning latent constraints, value functions that...
متن کاملUnconditional Generative Models
Deep generative neural networks have proven effective at both conditional and unconditional modeling of complex data distributions. Conditional generation enables interactive control, but creating new controls often requires expensive retraining. In this paper, we develop a method to condition generation without retraining the model. By post-hoc learning latent constraints, value functions that...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/1705.09474 شماره
صفحات -
تاریخ انتشار 2017